

Structural Studies on Cycloadducts of Furan, 2-Methoxyfuran, and 5-Trimethylsilylcyclopentadiene with Maleic Anhydride and *N*-Methylmaleimide

Yit Wooi Goh, Brett R. Pool, and Jonathan M. White*

School of Chemistry and Bio-21 Institute, The University of Melbourne, Parkville Vic 3010, Australia

whitejm@unimelb.edu.au

Received August 24, 2007

The early stages of the retro-Diels-Alder reaction are clearly apparent in the structures of the cycloadducts formed between furan or 5-trimethylsilylcyclopentadiene with maleic anhydride and *N*-methylmaleimide. The degree of lengthening of the C-C bonds that break in this reaction is clearly related to the known reactivity of these cycloadducts toward this reaction. In the structures of the cycloadducts **21** and **22** derived from 2-methoxyfuran, the early stages of an alternative fragmentation reaction are apparent, consistent with the reactivity of these compounds in solution.

Introduction

We have reported the structures of Diels–Alder cycloadducts formed between cyclopentadiene and cyclohexadiene derivatives with a variety of dienophiles including maleic anhydride, *N*-methylmaleimide, and benzoquinone.¹⁻⁴ These compounds were characterized using X-ray crystallography and by the determination of their ¹³C–¹³C 1-bond coupling constants in solution. In these structures the C–C bonds (indicated **a** and **b**), which are broken in the retro-Diels–Alder (rDA) reaction, were found to be lengthened compared to similar C–C bonds in model substrates, which do not undergo this pericyclic fragmentation process.

These are examples of the structure correlation principle,⁵ which states that structural changes which occur along a reaction

coordinate manifest in the ground state structure as deviations of bond distances from their normal values along the reaction coordinate. Compounds 1-6 which have been computed to undergo synchronous rDA reactions show similar degrees of lengthening for both bonds **a** and **b** in the ground state,² and in addition the degree of lengthening was found to correlate qualitatively with the known rDA reactivity of these cycload-ducts.

In adduct 7, which undergoes an asynchronous rDA reaction, bond **a** is lengthened to a significantly greater degree than bond **b**, which reflects the differences in these distances in the calculated transition state for the reaction. The crystal structure of the dioxygenated adduct 8 shows significant lengthening of bond **a** while bond **b** was "normal", leading to the prediction of a stepwise retro-Diels—Alder reaction for this derivative.⁴

The aim of this work was to obtain structural data on a range of Diels-Alder cycloadducts spanning a wider range of reactivities toward the rDA reaction, to further our understanding of the relationship between the degree of C-C bond lengthening in these adducts and their rDA reactivity. To this end we chose two classes of compound for this study, the trimethylsilyl-

⁽¹⁾ Pool, B. R.; White, J. M. Org. Lett. 2000, 2, 350.

^{10.1021/}jo7018575 CCC: 40.75 @ 2008 American Chemical Society Published on Web 12/11/2007

⁽²⁾ Birney, D.; Lim, T. K.; Peng, J.; Pool, B. R.; White, J. M. J. Am. Chem. Soc. 2002, 124, 5091.

⁽³⁾ Goh, Y.G.; Danczak, S. M.; Lim, T. K.; White, J. M. J. Org. Chem. **2007**, 72, 2929.

⁽⁴⁾ Goh, Y. W.; White, J. M. Org. Biomol. Chem. 2007, 5, 2354.

⁽⁵⁾ Burgi, H. B.; Dunitz, J. D. Acc. Chem. Res. 1983, 16, 153.

TABLE 1. Selected Bond Distances for 1 and 9

cycloadduct	bond a	bond b	average (a and b)
1 9	1.569(2) 1.579(2)	1.570(2) 1.574(2)	1.570 1.577
corrected for libration effects 1 9	1.572 1.582	1.573 1.577	1.572 1.580

 TABLE 2.
 Selected Bond Distances and Corrected Bond Distances for 18 and 19

compd	bond a	bond b	average (a and b)
18	1.548(2)	1.548(2)	1.548
19 corrected for libration effects	1.554(2)	1.560(2)	1.557
18	1.551	1.553	1.552
19	1.556	1.561	1.559

substituted cycloadducts **9–11** and the furan cycloaducts **12– 17**. Incorporation of an exo-trimethylsilyl substituent has been reported to increase the rate of the rDA by a factor of 95 (when X is $CH_2=CH_2$).⁶ The origin of this rate enhancement was proposed to arise from charge stabilization of the polarized transition state from $\sigma_{C-Si}-\pi$ hyperconjugation involving the trimethylsilyl-group, which is antiperiplanar to the C–C bonds which break in this reaction.

Also of interest was to compare the structures of cycloadducts derived from furan. for which the barrier to the rDA reaction has been calculated to be ca. 37-40 kJ/mol lower than that for corresponding cyclopentadiene cycloadducts. This rate enhancement is believed to reflect the restoration of some aromatic character in the furan moiety at the transition state for the cycloreversion.⁷ The facile rDA reaction of the furan-maleic anhydride cycloadduct is experimentally demonstrated by the rapid isomerization of the initially formed endo adduct 12 to the more stable *exo* adduct **15**. Furan cycloadducts are not only interesting due to their facile rDA reaction, but they also provide the opportunity to compare the structures of endo and exo cycloadducts, as these also have different reactivities; Lee et al. reported that the rate of the rDA reaction of the endo adduct 12 is 4 orders of magnitude greater than that of the exo adduct 15.8

Results and Discussion

Trimethylsilyl-Substituted Cycloadducts. Trimethylsilylsubstituted cycloadducts 9-11 were prepared by combining 5-trimethylsilylcyclopentadiene⁹ with maleic anhydride, *N*-

152 J. Org. Chem., Vol. 73, No. 1, 2008

13

1	1.569(2)	1.570(2)
2	1.571(2)	1.570(2)
13	1.571(2)	1.567(2)
corrected for libration effects		
1	1.572	1.573
2	1.574	1.574

 TABLE 5.
 Selected Bond Distances for 2, 15, 19, and 20

compd	bond a	bond b	average (a and b)	Δ (Å)
2	1.571(2)	1.570(2)	1.570	0.023
18	1.546(3)	1.548(3)	1.547	
15	1.564(2)	1.567(2)	1.566	0.042
20	1.524(2)	1.524(3)	1.524	
corrected for libration effects				
2	1.574	1.574	1.574	0.022
18	1.551	1.553	1.552	
15	1.573	1.570	1.572	0.044
20	1.527	1.527	1.527	

cycloadduct	C3-O3	C6-O3	bond a	bond b	Δ bond a and b
21	1.448(3)	1.434(3)	1.573(2)	1.565(2)	0.008
22	1.448(2)	1.437(2)	1.567(2)	1.569(2)	0.002
23			1.568(2)	1.548(2)	0.020
corrected for libration effects					
21	1.453	1.438	1.576	1.569	0.007
22	1.454	1.441	1.571	1.574	0.003
23			1.570	1.551	0.019

methylmaleimide, and benzoquinone, respectively. Crystals suitable for X-ray analysis were obtained for adduct **9**; however, crystals of **10** and **11** were low quality and the resulting structural data, which had *R* factors of 6.5% and 12%, were deemed inaccurate for this study. Although this is a limited set of structural data, selected bond distances for **9** and the corresponding unsubstituted derivative 1^2 for comparison are presented in Table 1, which also includes data corrected for thermal libration effects.¹⁰

average

(a and b)

1.570(2)

1.570(2)

1.569(2)

1.572

1.574

1.575

bond b

1.573

FIGURE 1. Through-bond orbital interactions in 19.

TABLE 3.	Selected	Bond	Distances	for	Endo	and	Exo	Furan
Adducts 13	and 16							

compd	bond a	bond b	(a and b)
13	1.571(2)	1.569(2)	1.570
16	1.563(2)	1.564(2)	1.564
corrected for libration effects			
13	1.578	1.573	1.576
16	1.567	1.566	1.567

bond a

1.578

 TABLE 4.
 Selected Bond Distances for 1 and 2 and 13

⁽⁶⁾ Magnus, P.; Cairns, P. M.; Moursounidis, J. J. Am. Chem. Soc. 1987, 109, 2469

⁽⁷⁾ Rulisek, L.; Sebek, P.; Havlas, Z.; Hrabal, R.; Capek, P. J. Org. Chem. 2005, 70, 6295.

⁽⁸⁾ Lee, M. W.; Herdon, W. C. J. Org. Chem. 1978, 43, 518.
(9) Kralhanzel, C. S.; Losee, M. L. J. Am. Chem. Soc. 1969, 90, 4701.

FIGURE 2. Ortep plots and orbital interaction diagrams for 21-23; ellipsoids are at the 20% probability level.

These results show that, bonds **a** and **b** which break in the rDA reaction of 9 are on average 0.007 Å longer compared with those for 1 (0.008 Å when corrected for libration). Given the estimated standard deviation (esd) values of 0.002 Å on these distances, the lengthening of bonds **a** and **b** due to the presence of SiMe₃ is barely significant. Extra lengthening of bonds **a** and **b**, if taken as significant, might reflect the effects of $\sigma_{C-Si} - \sigma^*_{C-C}$ hyperconjugation between the antiperiplanar C-Si bond and bonds a and b. This is the same interaction that was proposed to stabilize the transition state for the rDA reaction of this substrate.⁶ To gain further evidence for this interaction, the X-ray structures of the saturated analogues 18 and 19, which were prepared from 2 and 9 by catalytic hydrogenation, were also determined. [Crystals of the saturated analogue of compound 1 did not provide data of satisfactory quality; previous work² suggests that comparison with the saturated analogue of 2 is justified.] Relevant structural parameters for 18 and 19 are summarized in Table 2.

The saturated adduct **19** loses the effect of the $\pi - \sigma^*$ interaction, which causes lengthening of bonds **a** and **b**, and leads to the rDA reaction, but retains the $\sigma_{C-Si} - \sigma^*_{C-C}$ interaction. Interestingly the two C–C bonds (**a** and **b**), which are antiperiplanar to the SiMe₃ substituent, are 0.009 Å longer than the nonsubstituted adduct **18** (corrected is 0.007 Å). This bond lengthening can be described in orbital terms as an example of a Grob-like through-bond interaction between the σ_{C-Si} bonding orbital and the carbonyl π^* orbital, the geometrical requirements of which are well met within the bicyclic framework (Figure 1)

(10) Trueblood, K. N.; Maverick, E. F. *THMA11c*, A TLS Thermal Motion Analysis based on experimentally measured anisotropic displacement parameters available from the following WEB site: www.chem.gla.ac.uk/ ~louis/thma14/.

Furan Cycloadducts. The Diels–Alder reaction of furan with benzoquinone has been reported to occur at very high pressure;¹¹ however, our attempts to reproduce this result only returned starting materials. The Diels–Alder reaction between furan and maleic anhydride gave initially the *endo* cycloadduct **12** as judged by the ¹H NMR spectrum of the crude product; however, crystals of **12** for X-ray analysis could not be obtained, as isomerization to the more stable *exo* isomer **15** occurred during crystallization even at -20 °C. Suitable crystals for both the *endo* and *exo* isomers (**13** and **16**) of the slightly less reactive *N*-methylmaliemide cycloadduct were obtained by fractional crystallization of the crude reaction product. Selected structural data for **13** and **16** are summarized in Table 3.

The bonds **a** and **b** in the slightly more reactive *endo* isomer **13** are on average 0.006 Å longer compared to those of the more stable *exo* cycloadduct **16**, and this difference increases when libration corrections are applied (0.009 Å). This difference

is comparable in magnitude to that calculated at the B3LYP-G31G* level for the *endo* and *exo* cycloadducts **12** and **15**.¹² The difference, which is very small, is only barely significant, but is consistent with the demonstrated higher reactivity of the *endo* isomer **13** compared to the *exo* isomer **16**.

Comparison of the structural parameters for these furan cycloadducts, with less reactive cyclopentadiene adducts, can be made by inspecting the structural parameters for 1, 2, and 13 all having the *endo* geometry; selected bond distances are summarized in Table 4.

Surprisingly the C–C bond distances in the *endo* furan cycloadduct **13** are not significantly different from those observed in the much less reactive cyclopentadiene cycloadducts

⁽¹¹⁾ Jurczak, J.; Kozluk, T.; Filipek, S.; Euster, C. H. *Helv. Chim. Acta* **1983**, 66, 222.

1 and 2. This appeared to be counter to the predictions of the structure correlation principle. A possible explanation is that the presence of the electronegative oxygen of the furan moiety decreases the "natural" C-C bond distances (a and b) to the bridgehead carbons, suggesting that perhaps a direct comparison between these bond distances with the corresponding distances in the cyclopentadiene cycloadducts is not justified. Thus it was deemed more appropriate to determine the degree of lengthening of the C-C bond distances in the furan cycloadducts compared with their corresponding saturated analogues, which cannot undergo the rDA reaction, and compare this to the degree of lengthening of the C-C bonds in the cyclopentadiene cycloadducts with their saturated analogues. After reduction of the furan cycloadducts 12–17 by hydrogenation the only suitable crystals for X-ray analysis were obtained for the saturated exo furan maleic anhydride cycloadduct 20, which was compared with the exo cycloadduct 15. Selected data for compounds 2, 18, 15, and 20 are presented in Table 5.

From these data it is quite clear that the "natural" C-C bond distances to the bridgehead carbons as provided by the saturated furan cycloadduct **20** are significantly shorter than the similar

C-C bonds in the saturated cyclopentadiene adduct **18**, thus demonstrating that the electronegative oxygen does indeed exert a marked "bond-shortening" effect. This effect can be more generally demonstrated from a search of the Cambridge Crystallographic database.¹³ Molecules containing the C-C-O fragment gave a mean C-C distance of 1.531 Å while similar C-C-C fragments had a mean C-C distance of 1.547 Å. Importantly, these data show that the degree of bond lengthening observed in the furan cycloadduct **15** relative to the saturated analogue **20**, which is 0.042 Å, is significantly greater than the degree of bond lengthening observed in the structure correlation principle,⁵ this is consistent with the greater reactivity of the furan cycloadducts toward the rDA reaction.

The structural effects arising in the cycloadducts of 2-methoxyfuran with maleic anhydride and *N*-methylmaleimide were investigated, as previous reports suggest that cycloadditions involving 2-methoxyfuran as dienophile proceed in a stepwise fashion.¹⁴ We therefore expected there to be marked differences in the lengths of bonds **a** and **b** in the ground state in accord with previous observations on the cyclohexadiene cycloadduct **8**.⁴ Thus the *exo* cycloadducts **21** and *endo* cycloadduct **22** were prepared by combining 2-methoxyfuran with maleic anhydride and *N*-methylmaleimide, respectively. Crystals of suitable quality for X-ray analysis were obtained at -20 °C. Selected structural data for **21** and **22** are presented in Table 6, in addition to the previously determined cycloadduct **23**,⁴ which is included here for comparison.

Surprisingly, there was found to be very little difference in the bond distances **a** and **b** in both **21** and **22**, which contrasts with the result obtained for 23 where the difference is much more significant. An explanation for this "anomalous" result is provided by examination of the conformation of the OCH₃ substituent as defined by the CH_3 -O-C3-C2 dihedral angle. In compound 23 the CH₃-O-C3-C2 dihedral angle is 69.1-(2)°, which allows for effective overlap of a nonbonded orbital on the oxygen with the C3–C2 σ^* orbital (Figure 2); it is this interaction that was proposed to cause the extra lengthening of bond a compared to bond b.⁴ However, in compounds 21 and 22 the CH₃-O-C3-C2 dihedral angles are 177.9° and 180.0°, respectively, which places the OCH₃ group antiperiplanar to the C3–C2 bond, resulting in overlap of a nonbonded orbital on the oxygen with the bridging C–O σ^* orbital (Figure 2) rather than with the C3–C2 σ^* orbital. Consistent with this is significant asymmetry in the two C-O bond distances involving the bridging oxygen (Table 6). The C3-O3 distance is significantly longer than the C6-O3 distance, which is an example of the structural anomeric effect that has been described previously for other oxygen-containing systems.¹⁵

Interesting, upon standing at room temperature, cycloaducts **21** and **22** both underwent decomposition giving the aromatic products **24** and **25**, respectively, by initial cleavage of the C3–O bond followed by aromatization by elimination of H₂O. The initial step of this rearrangement no doubt involves the same interaction causing lengthening of the C3–O bond distance (Scheme 1).

Conclusions

Relationships between structure and reactivity are demonstrated by comparing the trimethysilylcyclopentadiene-maleic anhydride cycloadduct **9** with the silicon-free analogue **1**, and by comparison of the *endo* and *exo* isomers of furan cycloadducts **13** and **16**. The C-C bonds, which break in the retro-Diels-Alder (rDA) reaction for these structures, are slightly longer in the more reactive derivatives. This effect is small, thus demonstrating that small increases in C-C bond distance have a large effect on the rDA reactivity. However, care must be taken when comparing C-C bond distances in unlike systems, for example, the bond distances for the C-C bonds

⁽¹³⁾ Allen, F. H.; Bellard, S.; Brice, M. D.; Cartwright, B. A.; Doubleday, A.; Higgs, H.; Hummelink, T.; Hummelink-Peters, T.; Kennard, O.; Motherwell, W. D. S.; Rogers, J. R.; Watson, D. G. *Acta Crystallogr.* **1979**, *B35*, 2331.

⁽¹⁴⁾ Bridson, J. N.; Bennett, S. M.; Butler, G. J. Chem. Soc., Chem. Commun. 1980, 413.

⁽¹⁵⁾ Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer-Verlag: New York, 1983.

JOC Article

TABLE 7. Crystal Data and Structure Refinement Details for Compounds 9-11, 13, 15, 16, 19, 20, 21, and 22

	9	10	11	13	15
ampirical formula	C.H. O.S.	C.H.NO Si	СНО. Si	C.H.NO	С.Н.О
formula weight	$C_{12}H_{16}O_3S1$	$C_{13}H_{19}NO_2S1$ 240.38	$C_{13}H_{17}O_2S1$	$C_9H_9NO_3$	$C_8H_6O_4$
temperature $(^{\circ}C)$	230.34	130(2)	130.0(1)	179.17	177.15
radiation	$M_0 K \alpha$	MoKa	ΜοΚα	ΜοΚα	ΜοΚα
wavelength (Å)	0.71073	0.71073	0.71073	0.71073	0.71073
crystal system	monoclinic	monoclinic	triclinic	monoclinic	orthorhombic
space group	$P2_1/c$	$P2_{1}/c$	$P\overline{1}$	$P2_1/c$	$P2_{1}2_{1}2_{1}$
unit cell dimensions					
a (Å)	12.636(2)	21.4178(17)	6.556(1)	12.1591(13)	5.3600(12)
b(A)	6.498(1)	29.654(2)	10.968(2)	10.3998(11)	6.9759(15)
<i>c</i> (A)	15.649(3)	6.4401(5)	19.259(3)	6.8354(8)	18.844(4)
α (deg)	90	90	75.350(3)	90	90
β (deg)	107.573(3)	91.594(2)	87.190(4)	104.382(2)	90
γ (deg)	90	90	89.440(3)	90	90
volume (A ⁺)	1223.0(4)	4088.7(0)	1556.1(4)	656.5(2) 4	/04.0(3)
$D \left(M \alpha / m^3 \right)$	4	12	4	4	4
U_c (wg/m)	0.181	0.163	0.091	0.108	0.128
F(000)	504	1608	500	376	344
crystal size	$0.20 \times 0.20 \times 0.15$	$0.5 \times 0.25 \times 0.1$	$0.25 \times 0.15 \times 0.05$	$0.30 \times 0.10 \times 0.00$	05 $0.50 \times 0.15 \times 0.05$
θ range (deg)	1.69 to 27.51	0.95 to 25.00	1.09 to 27.55	1.73 to 25.00	2.16 to 27.51
no. of refx collected	7436	21654	8392	5889	4400
independent	2792	7197	5852	1473	1592
<i>R</i> (int)	0.0340	0.068	0.0602	0.0856	0.0656
observed $(I > 2\sigma(I))$	2193	5425	3770	1397	1450
data/restraints/param	2792/0/149	7197/0/470	5852/0/315	1473/0/120	1592/0/110
GOF on F^2	0.980	1.092	1.059	1.058	1.020
final <i>R</i> indices $[L > 2\pi(D)]$	0.0415 mP2 = 0.1002	0.0656	0.1233	0.0481	0.0407
$[I \ge 20(I)]$ <i>R</i> indices	WK2 = 0.1005 0.0522	WK2 = 0.1413 0.0887	WR2 = 0.3194 0.1600	WR2 = 0.1210 0.0408	WR2 = 0.0977
(all data)	wR2 = 0.1052	wR2 = 0.1521	wR2 = 0.3580	wR2 = 0.1226	$wR^2 = 0.0998$
weighting scheme ^{<i>a</i>} A	0.0577	0.059	0.1896	0.0507	0.0535
weighting scheme: ^{a} B	0	0.30	2.38	0.35	0
largest diff peak/hole (eÅ-3)	0.313/-0.265	0.394/-0.340	3.5/-0.4	0.202/-0.195	0.235/-0.190
	16	19	20	21	22
empirical formula	16 CoHoNO3	19 C12H18O3Si	20 C ₈ H ₈ O ₄	21 CoH8O5	22 C ₀ H ₀ NO ₃ •[C ₂ H ₅ OH•H ₂ O]
empirical formula formula weight	16 C ₉ H ₉ NO ₃ 179.17	19 C ₁₂ H ₁₈ O ₃ Si 238.35	20 C ₈ H ₈ O ₄ 168.14	21 C ₉ H ₈ O ₅ 195.15	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28
empirical formula formula weight temperature (°C)	16 C ₉ H ₉ NO ₃ 179.17 130(2)	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2)	20 C ₈ H ₈ O ₄ 168.14 130(2)	21 C ₉ H ₈ O ₅ 195.15 130.0(1)	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2)
empirical formula formula weight temperature (°C) radiation	16 C ₉ H ₉ NO ₃ 179.17 130(2) ΜοΚα	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2) Μο Κα	20 C ₈ H ₈ O ₄ 168.14 130(2) Μο Κα	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Μο Κα	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2) Mo Kα
empirical formula formula weight temperature (°C) radiation wavelength (Å)	16 C ₉ H ₉ NO ₃ 179.17 130(2) ΜοΚα 0.71073	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2) Mo Kα 0.71073	20 C ₈ H ₈ O ₄ 168.14 130(2) Μο Κα 0.71073	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073	22 C ₉ H ₉ NO ₃ ·[C ₂ H ₅ OH·H ₂ O] 273.28 130(2) Mo Kα 0.71073
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2) Mo Kα 0.71073 monoclinic	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic	22 C ₉ H ₉ NO ₃ ·[C ₂ H ₅ OH·H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic P2 ₁ /c	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2) Mo Kα 0.71073 monoclinic <i>P</i> 2 ₁ / <i>c</i>	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic <i>C</i> 2/ <i>c</i>	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic P2 ₁ /c	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2) Mo Kα 0.71073 monoclinic <i>P</i> 2 ₁ / <i>c</i>	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic <i>C</i> 2/ <i>c</i>	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å)	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic P2 ₁ /c 6.6227(3) 15.9098(8)	19 C ₁₂ H ₁₈ O ₃ Si 238.35 130(2) Mo Kα 0.71073 monoclinic <i>P</i> 2 ₁ / <i>c</i> 12.930(2) 6.3374(8)	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁ 10.448(3) 6.5388(15)	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13)	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7)
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å)	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic P2 ₁ /c 6.6227(3) 15.9098(8) 7.7878(4)	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2)	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁ 10.448(3) 6.5388(15) 10.263(2)	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13 990(4)	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7) 17.240(2)
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) a (deg)	16 C9H9NO3 179.17 130(2) MoKα 0.71073 monoclinic P21/c 6.6227(3) 15.9098(8) 7.7878(4) 90	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁ 10.448(3) 6.5388(15) 10.263(2) 90	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90	22 C ₉ H ₉ NO ₃ •[C ₂ H ₅ OH•H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7) 17.240(2) 90
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (dee)	16 C9H9NO3 179.17 130(2) MoKα 0.71073 monoclinic P21/c 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1)	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2)	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4)	22 C ₉ H ₉ NO ₃ ·[C ₂ H ₅ OH·H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2)
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg)	16 C9H9NO3 179.17 130(2) MoKα 0.71073 monoclinic P21/c 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90	22 C ₉ H ₉ NO ₃ ·[C ₂ H ₅ OH·H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³)	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 \$12.17(7)	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 1229.5(4) \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 701.1(3) \end{array}$	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7)	$\begin{array}{c} 22\\ C_{9}H_{9}NO_{3}\cdot [C_{2}H_{5}OH \cdot H_{2}O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_{1}/n\\ \\ 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 1229.5(4) \\ 4 \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 701.1(3) \\ 4 \end{array}$	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7)	$\begin{array}{c} 22\\ C_{9}H_{9}NO_{3}\cdot [C_{2}H_{5}OH \cdot H_{2}O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_{1}/n\\ \\ 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z D_c (Mg/m ³)	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181	20 C ₈ H ₈ O ₄ 168.14 130(2) Mo Kα 0.71073 orthorhombic <i>Pna</i> 2 ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 701.1(3) 4 1.593 0.120	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo Kα 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7) 8 1.560 0.120	22 C ₉ H ₉ NO ₃ ·[C ₂ H ₅ OH·H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.100
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg) volume (Å ³) Z D_c (Mg/m ³) μ (mm ⁻¹)	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic P2 ₁ /c 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 276	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 701.1(3) 4 1.593 0.129 252	$\begin{array}{c} \textbf{21} \\ \hline C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 916 \\ \end{array}$	22 C ₉ H ₉ NO ₃ ·[C ₂ H ₅ OH·H ₂ O] 273.28 130(2) Mo Kα 0.71073 monoclinic P2 ₁ /n 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z D_c (Mg/m ³) μ (mm ⁻¹) F(000) corrected size	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 \times 0.20 \times 0.15	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181 512 0.40 × 0.20 × 0.2	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 90 90 701.1(3) 4 1.593 0.129 352 0.5 × 0.2 × 0.1	$\begin{array}{c} \textbf{21} \\ \hline C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{c} 22\\ \hline C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z D_c (Mg/m ³) μ (mm ⁻¹) F(000) crystal size d range (deg)	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P_{21/c}$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181 512 0.40 × 0.30 × 0.2 1.66 to 25 00	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 701.1(3) 4 1.593 0.129 352 0.5 × 0.2 × 0.1 3.68 to 24.99	$\begin{array}{c} \textbf{21} \\ \hline C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \ to 24.98 \\ \hline \end{array}$	22 $C_9H_9NO_3 \cdot [C_2H_5OH \cdot H_2O]$ 273.28 130(2) Mo K α 0.71073 monoclinic $P2_1/n$ 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584 2.39 to 25.00
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) a (deg) β (deg) γ (deg) volume (Å ³) Z D_c (Mg/m ³) μ (mm ⁻¹) F(000) crystal size θ range (deg) no. of refx collected	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50 6944	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 1229.5(4) \\ 4 \\ 1.288 \\ 0.181 \\ 512 \\ 0.40 \times 0.30 \times 0.2 \\ 1.66 \ to \ 25.00 \\ 5470 \\ \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 701.1(3) \\ 4 \\ 1.593 \\ 0.129 \\ 352 \\ 0.5 \times 0.2 \times 0.1 \\ 3.68 \ to \ 24.99 \\ 3366 \\ \end{array}$	$\begin{array}{c} \textbf{21} \\ \hline C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \ to 24.98 \\ 4185 \\ \hline \end{array}$	22 $C_9H_9NO_3 \cdot [C_2H_5OH \cdot H_2O]$ 273.28 130(2) Mo K α 0.71073 monoclinic $P2_1/n$ 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584 2.39 to 25.00 6234
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg)	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50 6944 1859	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 1229.5(4) \\ 4 \\ 1.288 \\ 0.181 \\ 512 \\ 0.40 \times 0.30 \times 0.2 \\ 1.66 \ to \ 25.00 \\ 5470 \\ 2157 \\ \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 701.1(3) \\ 4 \\ 1.593 \\ 0.129 \\ 352 \\ 0.5 \times 0.2 \times 0.1 \\ 3.68 \ to 24.99 \\ 3366 \\ 1205 \end{array}$	$\begin{array}{c} 21 \\ C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 117.184(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \ to 24.98 \\ 4185 \\ 1476 \\ \end{array}$	$\begin{array}{c} 22\\ \hline C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \hline 2.39 \ to \ 25.00\\ 6234\\ 2158\\ \hline \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	$\begin{array}{c} 16 \\ C_9H_9NO_3 \\ 179.17 \\ 130(2) \\ MoK\alpha \\ 0.71073 \\ monoclinic \\ P2_1/c \\ 6.6227(3) \\ 15.9098(8) \\ 7.7878(4) \\ 90 \\ 98.204(1) \\ 90 \\ 812.17(7) \\ 4 \\ 1.465 \\ 0.111 \\ 376 \\ 0.45 \times 0.30 \times 0.15 \\ 2.56 \text{ to } 27.50 \\ 6944 \\ 1859 \\ 0.0392 \\ \end{array}$	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 1229.5(4) \\ 4 \\ 1.288 \\ 0.181 \\ 512 \\ 0.40 \times 0.30 \times 0.2 \\ 1.66 \ to \ 25.00 \\ 5470 \\ 2157 \\ 0.0546 \\ \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8 H_8 O_4 \\ 168.14 \\ 130(2) \\ Mo K \alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 701.1(3) \\ 4 \\ 1.593 \\ 0.129 \\ 352 \\ 0.5 \times 0.2 \times 0.1 \\ 3.68 \text{ to } 24.99 \\ 3366 \\ 1205 \\ 0.049 \\ \end{array}$	$\begin{array}{c} 21 \\ C_{9}H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \ to 24.98 \\ 4185 \\ 1476 \\ 0.1003 \\ \end{array}$	$\begin{array}{c} 22\\ \hline C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \hline 2.39 \ to \ 25.00\\ 6234\\ 2158\\ 0.0416\\ \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	$\begin{array}{c} 16 \\ \hline C_9H_9NO_3 \\ 179.17 \\ 130(2) \\ MoK\alpha \\ 0.71073 \\ monoclinic \\ P2_1/c \\ \hline 6.6227(3) \\ 15.9098(8) \\ 7.7878(4) \\ 90 \\ 98.204(1) \\ 90 \\ 812.17(7) \\ 4 \\ 1.465 \\ 0.111 \\ 376 \\ 0.45 \times 0.30 \times 0.15 \\ 2.56 \text{ to } 27.50 \\ 6944 \\ 1859 \\ 0.0392 \\ 1743 \\ \end{array}$	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1/c} \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 107.937(2) \\ 90 \\ 1229.5(4) \\ 4 \\ 1.288 \\ 0.181 \\ 512 \\ 0.40 \times 0.30 \times 0.2 \\ 1.66 \ to \ 25.00 \\ 5470 \\ 2157 \\ 0.0546 \\ 1721 \\ \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 701.1(3) \\ 4 \\ 1.593 \\ 0.129 \\ 352 \\ 0.5 \times 0.2 \times 0.1 \\ 3.68 \ to 24.99 \\ 3366 \\ 1205 \\ 0.049 \\ 1154 \\ \end{array}$	$\begin{array}{c} 21 \\ C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 117.184(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \ to 24.98 \\ 4185 \\ 1476 \\ 0.1003 \\ 1032 \\ \end{array}$	$\begin{array}{c} 22\\ \hline C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \hline 2.39 \ to \ 25.00\\ 6234\\ 2158\\ 0.0416\\ 1886\\ \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	$\begin{array}{c} 16 \\ \hline C_9H_9NO_3 \\ 179.17 \\ 130(2) \\ MoK\alpha \\ 0.71073 \\ monoclinic \\ P2_1/c \\ \hline 6.6227(3) \\ 15.9098(8) \\ 7.7878(4) \\ 90 \\ 98.204(1) \\ 90 \\ 812.17(7) \\ 4 \\ 1.465 \\ 0.111 \\ 376 \\ 0.45 \times 0.30 \times 0.15 \\ 2.56 \text{ to } 27.50 \\ 6944 \\ 1859 \\ 0.0392 \\ 1743 \\ 1859/0/119 \\ \end{array}$	$\begin{array}{c} 19 \\ C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 107.937(2) \\ 90 \\ 10229.5(4) \\ 4 \\ 1.288 \\ 0.181 \\ 512 \\ 0.40 \times 0.30 \times 0.2 \\ 1.66 \ to \ 25.00 \\ 5470 \\ 2157 \\ 0.0546 \\ 1721 \\ 2157/0/148 \\ \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$	$\begin{array}{c} \textbf{21} \\ \hline C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo K\alpha \\ 0.71073 \\ monoclinic \\ \textit{C2/c} \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \text{ to } 24.98 \\ 4185 \\ 1476 \\ 0.1003 \\ 1003 \\ 1032 \\ 1476/0/129 \\ \end{array}$	$\begin{array}{c} 22\\ \hline C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \hline 2.39 \ to \ 25.00\\ 6234\\ 2158\\ 0.0416\\ 1886\\ 2158/0/137\\ \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	$\begin{tabular}{ c c c c c c }\hline & 16 \\ \hline $C_9H_9NO_3$ \\ 179.17 \\ $130(2)$ \\ $MoK$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$	$\begin{array}{c} 19 \\ \hline C_{12}H_{18}O_{3}Si \\ 238.35 \\ 130(2) \\ Mo \ K\alpha \\ 0.71073 \\ monoclinic \\ P2_{1}/c \\ \hline 12.930(2) \\ 6.3374(8) \\ 15.771(2) \\ 90 \\ 107.937(2) \\ 90 \\ 107.937(2) \\ 90 \\ 10229.5(4) \\ 4 \\ 1.288 \\ 0.181 \\ 512 \\ 0.40 \times 0.30 \times 0.2 \\ 1.66 \ to \ 25.00 \\ 5470 \\ 2157 \\ 0.0546 \\ 1721 \\ 2157/0/148 \\ 0.972 \\ \end{array}$	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$	$\begin{array}{c} \textbf{21} \\ \hline C_9H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \text{ to } 24.98 \\ 4185 \\ 1476 \\ 0.1003 \\ 1032 \\ 1476/0/129 \\ 0.907 \\ \end{array}$	$\begin{array}{c} 22\\ C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ 2.39 \ to \ 25.00\\ 6234\\ 2158\\ 0.0416\\ 1886\\ 2158/0/137\\ 1.042\\ \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoKα 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50 6944 1859 0.0392 1743 1859/0/119 1.052 0.0493	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo K α 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 .1288 0.181 512 0.40 × 0.30 × 0.2 1.66 to 25.00 5470 2157 0.0546 1721 2157/0/148 0.972 0.0395	$\begin{array}{c} \textbf{20} \\ \hline C_8H_8O_4 \\ 168.14 \\ 130(2) \\ Mo K\alpha \\ 0.71073 \\ orthorhombic \\ Pna2_1 \\ \hline 10.448(3) \\ 6.5388(15) \\ 10.263(2) \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 90 \\ 9$	$\begin{array}{c} \textbf{21} \\ C_{9}H_8O_5 \\ 195.15 \\ 130.0(1) \\ Mo K\alpha \\ 0.71073 \\ monoclinic \\ C2/c \\ \hline 25.166(6) \\ 5.3338(13) \\ 13.990(4) \\ 90 \\ 117.184(4) \\ 90 \\ 1670.4(7) \\ 8 \\ 1.560 \\ 0.130 \\ 816 \\ 0.5 \times 0.15 \times 0.1 \\ 1.82 \text{ to } 24.98 \\ 4185 \\ 1476 \\ 0.1003 \\ 1032 \\ 1476/0/129 \\ 0.907 \\ 0.0467 \\ \hline \end{array}$	$\begin{array}{c} 22\\ C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo \ K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \hline 2.39 \ to \ 25.00\\ 6234\\ 2158\\ 0.0416\\ 1886\\ 2158/0/137\\ 1.042\\ 0.0470\\ \hline \end{array}$
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50 6944 1859 0.0392 1743 1859/0/119 1.052 0.0493 wR2 = 0.1355	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181 512 0.40 × 0.30 × 0.2 1.66 to 25.00 5470 2157 0.0546 1721 2157/0/148 0.972 0.0395 wR2 = 0.0933	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 90 90 90 90 90 90	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo K α 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7) 8 1.560 0.130 816 0.5 × 0.15 × 0.1 1.82 to 24.98 4185 1476 0.1003 1032 1476/0/129 0.907 0.0467 wR2 = 1006 0.255	22 $C_9H_9NO_3 \cdot [C_2H_5OH \cdot H_2O]$ 273.28 130(2) Mo Ka 0.71073 monoclinic $P2_1/n$ 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584 2.39 to 25.00 6234 2158 0.0416 1886 2158/0/137 1.042 0.0470 wR2 = 0.1195 9.0524
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	16 C ₉ H ₉ NO ₃ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50 6944 1859 0.0392 1743 1859/0/119 1.052 0.0493 wR2 = 0.1355 0.0512	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181 512 0.40 × 0.30 × 0.2 1.66 to 25.00 5470 2157 0.0546 1721 2157/0/148 0.972 0.0395 wR2 = 0.0933 0.0506	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 90 90 90 90 90 90	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo K α 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7) 8 1.560 0.130 816 0.5 × 0.15 × 0.1 1.82 to 24.98 4185 1476 0.1003 1032 1476/0/129 0.907 0.0467 wR2 = 1006 0.0695 wR2 = 0.1072	22 $C_9H_9NO_3 \cdot [C_2H_5OH \cdot H_2O]$ 273.28 130(2) Mo Ka 0.71073 monoclinic $P2_1/n$ 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584 2.39 to 25.00 6234 2158 0.0416 1886 2158/0/137 1.042 0.0470 wR2 = 0.1195 0.0524
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	16 $C_9H_9NO_3$ 179.17 130(2) MoK α 0.71073 monoclinic $P2_1/c$ 6.6227(3) 15.9098(8) 7.7878(4) 90 98.204(1) 90 812.17(7) 4 1.465 0.111 376 0.45 × 0.30 × 0.15 2.56 to 27.50 6944 1859 0.0392 1743 1859/0/119 1.052 0.0493 wR2 = 0.1355 0.0512 wR2 = 0.1371 0.0741	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181 512 0.40 × 0.30 × 0.2 1.66 to 25.00 5470 2157 0.0546 1721 2157/0/148 0.972 0.0395 wR2 = 0.0933 0.0506 wR2 = 0.972 0.0478	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 90 90 90 90 90 90	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo K α 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7) 8 1.560 0.130 816 0.5 × 0.15 × 0.1 1.82 to 24.98 4185 1476 0.1003 1032 1476/0/129 0.907 0.0467 wR2 = 1006 0.0695 wR2 = 0.1072 0.0432	22 $C_9H_9NO_3 \cdot [C_2H_5OH \cdot H_2O]$ 273.28 130(2) Mo Ka 0.71073 monoclinic $P2_1/n$ 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584 2.39 to 25.00 6234 2158 0.0416 1886 2158/0/137 1.042 0.0470 wR2 = 0.1195 0.0524 wR2 = 0.1228 0.0484
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) c (Å) α (deg) β (deg) γ (deg)	16 $C_9H_9NO_3$ 179.17130(2)MoK α 0.71073monoclinic $P2_1/c$ 6.6227(3)15.9098(8)7.7878(4)9098.204(1)90812.17(7)41.4650.1113760.45 × 0.30 × 0.152.56 to 27.50694418590.039217431859/0/1191.0520.0493wR2 = 0.13550.0512wR2 = 0.13710.7410.494	19 $C_{12}H_{18}O_3Si$ 238.35 130(2) Mo Kα 0.71073 monoclinic $P2_1/c$ 12.930(2) 6.3374(8) 15.771(2) 90 107.937(2) 90 1229.5(4) 4 1.288 0.181 512 0.40 × 0.30 × 0.2 1.66 to 25.00 5470 2157 0.0546 1721 2157/0/148 0.972 0.0395 wR2 = 0.0933 0.0506 wR2 = 0.972 0.0478 0	20 $C_8H_8O_4$ 168.14 130(2) Mo Ka 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 90 701.1(3) 4 1.593 0.129 352 0.5 × 0.2 × 0.1 3.68 to 24.99 3366 1205 0.049 1154 1205/0/109 1.032 0.0414 <i>wR2</i> = 0.0970 0.0431 <i>wR2</i> = 0.0979 0.0668 0	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo K α 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7) 8 1.560 0.130 816 0.5 × 0.15 × 0.1 1.82 to 24.98 4185 1476 0.1003 1032 1476/0/129 0.907 0.0467 wR2 = 1006 0.0695 wR2 = 0.1072 0.0432 0	22 $C_9H_9NO_3 \cdot [C_2H_5OH \cdot H_2O]$ 273.28 130(2) Mo Ka 0.71073 monoclinic $P2_1/n$ 8.8817(8) 8.1183(7) 17.240(2) 90 98.569(2) 90 1229.2(2) 4 1.421 0.108 584 2.39 to 25.00 6234 2158 0.0416 1886 2158/0/137 1.042 0.0470 wR2 = 0.1195 0.0524 wR2 = 0.1228 0.0484 0.81
empirical formula formula weight temperature (°C) radiation wavelength (Å) crystal system space group unit cell dimensions a (Å) b (Å) c (Å) α (deg) β (deg) γ (deg	16 $C_9H_9NO_3$ 179.17130(2)MoK α 0.71073monoclinic $P2_1/c$ 6.6227(3)15.9098(8)7.7878(4)9098.204(1)90812.17(7)41.4650.1113760.45 × 0.30 × 0.152.56 to 27.50694418590.039217431859/0/1191.0520.0493wR2 = 0.13550.0512wR2 = 0.13710.7410.4940.58/-0.26	19 $C_{12}H_{18}O_3Si$ 238.35130(2)Mo Kα0.71073monoclinic $P2_1/c$ 12.930(2)6.3374(8)15.771(2)90107.937(2)901229.5(4)41.2880.1815120.40 × 0.30 × 0.21.66 to 25.00547021570.054617212157/0/1480.9720.0395wR2 = 0.09330.0506wR2 = 0.9720.047800.309/-0.213	20 $C_8H_8O_4$ 168.14 130(2) Mo K α 0.71073 orthorhombic <i>Pna2</i> ₁ 10.448(3) 6.5388(15) 10.263(2) 90 90 90 90 90 701.1(3) 4 1.593 0.129 352 0.5 × 0.2 × 0.1 3.68 to 24.99 3366 1205 0.049 1154 1205/0/109 1.032 0.0414 <i>wR2</i> = 0.0970 0.0431 <i>wR2</i> = 0.0979 0.0668 0 0.214/-0.178	21 C ₉ H ₈ O ₅ 195.15 130.0(1) Mo K α 0.71073 monoclinic C2/c 25.166(6) 5.3338(13) 13.990(4) 90 117.184(4) 90 1670.4(7) 8 1.560 0.130 816 0.5 × 0.15 × 0.1 1.82 to 24.98 4185 1476 0.1003 1032 1476/0/129 0.907 0.0467 wR2 = 1006 0.0695 wR2 = 0.1072 0.0432 0 0.223/-0.222	$\begin{array}{c} 22\\ C_9H_9NO_3\cdot [C_2H_5OH\cdot H_2O]\\ 273.28\\ 130(2)\\ Mo K\alpha\\ 0.71073\\ monoclinic\\ P2_1/n\\ \hline 8.8817(8)\\ 8.1183(7)\\ 17.240(2)\\ 90\\ 98.569(2)\\ 90\\ 1229.2(2)\\ 4\\ 1.421\\ 0.108\\ 584\\ \hline 2.39 \ to \ 25.00\\ 6234\\ 2158\\ 0.0416\\ 1886\\ 2158/0/137\\ 1.042\\ 0.0470\\ wR2 = 0.1195\\ 0.0524\\ wR2 = 0.1228\\ 0.0484\\ 0.81\\ 0.266/-0.186\\ \hline \end{array}$

that break in the rDA for cyclopentadiene cycloadducts cannot be directly compared with the more reactive furan cycloadducts. It is thus more appropriate in these cases to compare the degree of bond lengthening with respect to an appropriate model system that cannot undergo the rDA reaction.

The structures of the 2-methoxyfuran cycloadducts **22** and **23** provided an insight into the observed instability of these compounds in solution.

Experimental Section

(1) X-ray Crystallography. Intensity data were collected with a Bruker SMART Apex CCD detector, using Mo K α radiation (graphite crystal monochromator $\lambda = 0.71073$). Data were reduced with use of the program SAINT. The temperature during data collection was maintained at 130.0(1) with an Oxford Cryostream cooling device. The structures were solved by direct methods and difference Fourier synthesis. Thermal ellipsoid plots were generated with the program ORTEP-3¹⁶ integrated within the WINGX¹⁷ suite of programs. Crystal data and structure refinement details are summarized in Table 7. Corrections for the effects of thermal libration were carried out with the Thma11 program.¹⁰

(2) Synthesis. General experimental details are reported elsewhere.³ 5-Trimethylsilylcyclopentadiene was prepared according to the literature procedure.⁹ Accurate mass data were collected on a Waters LCT Premier XE time-of-flight mass spectrometer.

Cycloadduct 9. Maleic anhydride (0.551 g, 5.62 mmol) in diethyl ether (10 mL) and 5-trimethylsilylcyclopentadiene (0.802 g, 5.81 mmol) in diethyl ether (15 mL) were stirred at room temperature under nitrogen for 6 h. The solvent was removed under reduced pressure and the crude product was recrystallized from pentane to give cycloadduct **9** as colorless crystals (0.916 g, 3.88 mmol, 69%), mp 99–100 °C (lit.⁵ mp 98–99 °C). ¹H NMR (CDCl₃) δ 6.24 (2H, t, J = 1.7 Hz), 3.62 (2H, dd, J = 1.7 Hz, 1.5 Hz) 3.55 (2H, t, J = 15 Hz), 1.26 (1H, s), -0.042 (9H, s); ¹³C NMR (CDCl₃) δ 171.0, 135.0, 56.9, 49.4, 49.1, -0.5.

Cycloadduct 10. *N*-Methylmaleimide (0.201 g, 1.81 mmol) and 5-trimethylsilylcyclopentadiene (0.278 g, 2.01 mmol) in diethyl ether (15 mL) were stirred at room temperature for 8 h. The crude product was recrystallized from hexane to give colorless crystals (0.393 g, 1.58 mmol, 87%), mp 91–93 °C. ¹H NMR (CDCl₃) δ 6.00 (2H, t, *J* = 2.0 Hz), 3.41 (2H, br s), 3.55 (2H, br s), 2.79 (3H, s), 1.22 (1H, s), -0.07 (9H, s); ¹³C NMR (CDCl₃) δ 177.7, 133.9, 55.9, 48.4, 47.6, 24.1, -0.4. MH+ 250.1264 calcd for C₁₃H₁₉NO₂-Si 250.1263.

Cycloadduct 11.¹⁸Benzoquinone (0.199 g, 1.84 mmol) and 5-trimethylsilylcyclopentadiene (0.254 g, 1.84 mmol) in diethyl ether (15 mL) were stirred at room temperature for 4 h. The crude product was recrystallized from hexane to give **11** as yellow crystals (0.397 g, 1.62 mmol, 88%), mp 86–87 °C. ¹H NMR (CDCl₃) δ 6.53 (2H, t, J = 2.2 Hz), 5.97 (2H, d, J = 1.9 Hz), 3.61 (2H, br s), 3.22 (2H, d, J = 1.5 Hz), 1.06 (1H, s), -0.07 (9H, s); ¹³C NMR (CDCl₃) δ 178.0, 139.0, 135.4, 57.0, 49.9, 49.2, -0.5.

Preparation of Compound 19. A mixture of cycloadduct **9** (0.500 g, 2.12 mmol) and 5% palladium on carbon (120 mg) in tetrahydrofuran (50 mL) was stirred under hydrogen at room temperature and atmospheric pressure. After consumption of 1 molar equiv of hydrogen (50 mL), the reaction mixture was filtered through celite and the solvent was removed under reduced pressure. The crude product was recrystallized from pentane to give **19** as colorless crystals (0.46 g, 1.93 mmol, 91%), mp 107–109 °C. ¹H NMR (CDCl₃) δ 3.41 (2H, br s), 2.91 (2H, br s) 1.69 (2H, m), 1.45 (2H, m), 1.08 (1H, s), 0.05 (9H, s); ¹³C NMR (CDCl₃) δ 171.9,

54.4, 45.6, 43.0, 24.9, $-1.0.\ MH+$ 239.10978 calcd for $C_{12}H_{19}O_3$ -Si 239.10980.

Cycloadduct 15. Maleic anhydride (0.648 g, 6.61 mmol) and furan (0.500 g, 7.34 mmol) in tetrahydrofuran (10 mL) were stirred together at room temperature for 16 h. The crude product was recrystallized from ethyl acetate to give **15** as colorless crystals (0.713 g, 4.30 mmol, 65%), mp 114–115 °C (lit.⁸ mp 110 °C). ¹H NMR (CDCl₃) δ 6.59 (2H, d, J = 3.2 Hz), 5.46 (2H, d, J = 3.2 Hz), 3.20 (2H, m); ¹³C NMR (CDCl₃) δ 168.3, 137.0, 82.2, 48.7.

Cycloadducts 13 and 16. *N*-Methylmaleimide (0.816 g, 7.34 mmol) and furan (1.000 g, 14.6 mmol) in tetrahydrofuran (10 mL) were reacted at room temperature for 48 h. The crude product was fractionally crystallized from ethyl acetate to give colorless crystals (0.802 g, 4.48 mmol, 61%), mp 138–140 °C (lit.⁸ mp 138–141 °C). *Endo* isomer **13**: ¹H NMR (CDCl₃) δ 6.40 (2H, s), 5.33 (2H, d, *J* = 4.2 Hz), 3.53 (2H, d, *J* = 4.2 Hz), 2.82 (3H, s); ¹³C NMR (CDCl₃) δ 175.1, 134.3, 79.4, 46.2, 24.6. *Exo* isomer **16**: ¹H NMR (CDCl₃) δ 6.50 (2H, s), 5.30 (2H, d, *J* = 4.0 Hz), 3.53 (2H, d, *J* = 4.0 Hz), 3.13 (3H, s); ¹³C NMR (CDCl₃) δ 174.2, 131.3, 79.3, 47.2, 24.5.

Cycloadduct 21 and Rearrangement Product 24. Maleic anhydride (0.450 g, 4.59 mmol) and 2-methoxyfuran (0.500 g, 5.10 mmol) in diethyl ether (10 mL) were stirred at room temperature for 48 h. Removal of the solvent and recrystallized of the crude product from ethyl acetate gave cycloadduct **21** as colorless crystals (0.774 g, 3.95 mmol, 86%), mp 121–124 °C (lit.⁹ mp 120–121 °C). ¹H NMR (CDCl₃) δ 6.72 (1H, dd, J = 2 Hz, 5.7 Hz), 6.54 (1H, d, J = 5.7 Hz), 5.27 (1H, d, J = 2 Hz), 3.64 (3H, s), 3.37 (1H, d, J = 6.5 Hz), 3.24 (1H, d, J = 6.5 Hz); ¹³C NMR (CDCl₃) δ 169.9, 166.3, 139.8, 135.7, 103.9, 76.7, 55.6, 53.0, 49.0.

Upon standing at room temperature cycloadduct **21** turned to a yellow oil. The ¹H NMR of the yellow oil was consistent with the literature data reported for compound **24**.¹⁹ ¹H NMR (CDCl₃) δ 7.82 (1H, t, *J* = 8.1 Hz), 7.57 (1H, d, *J* = 8.0 Hz), 7.33 (1H, d, *J* = 8.0 Hz), 4.08 (3H, s).

Cycloadduct 22. *N*-Methylmaleimide (0.500 g, 4.50 mmol) and 2-methoxyfuran (0.486 g, 4.95 mmol) in diethyl ether (10 mL) were stirred at room temperature for 30 h. The crude product was recrystallized from hexane to give cycloadduct **22** as colorless crystals (0.469 g, 2.24 mmol, 50%), mp 135–136 °C. ¹H NMR (CDCl₃) δ 6.48 (1H, dd, *J* = 1.7 Hz, 5.9 Hz), 6.41 (1H, d, *J* = 5.9 Hz), 5.14 (1H, m), 3.74 (1H, m), 3.59(3H, s), 3.36 (1H, d, *J* = 7.6 Hz), 2.84 (3H, s); ¹³C NMR (CDCl₃) δ 174.2, 173.7, 136.4, 133.1, 114.4, 73.7, 54.1, 48.7, 47.8, 24.1. MH+ 210.07607 calcd for C₁₀H₁₂NO₄ 210.07608.

Acknowledgment. Our gratitude goes to the University of Melbourne for MIRS and MIFRS scholarships, and an Albert Shimmins Fund award to Goh Yit Wooi. Thanks also go to Dr. Simon Egan and Asimo Karnezis for kindly acquiring HRMS at short notice.

Supporting Information Available: NMR spectra (¹H and ¹³C) for compounds **10** and **19** and libration corrections for compounds **9**, **10**, **13**, **15**, **16**, **19**, **20**, **21**, and **22**. This material is available free of charge via the Internet at http://pubs.acs.org.

JO7018575

⁽¹⁶⁾ Farrugia, L. J. J. Appl. Crystallogr. 1997, 30, 565.

⁽¹⁷⁾ Farrugia, L. J. J. Appl. Crystallogr. 1999, 32, 837.

⁽¹⁸⁾ Tolstikov, G. A.; Lerman, B. M.; Galin, F. Z.; Danilova, N. A. Zh. Obsh. Khim. **1977**, 47, 1656.

⁽¹⁹⁾ Gupta, D. N.; Hodge, P.; Hurley, P. N. J. Chem. Soc., Perkin Trans. 1 1989, 391.